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1. Basic Equations 

It is known that the stationary, irrotational, two dimensional f l o w  

around flat bodies which is treated in the following can be described for 

small Mach Numbers M (ratio of stream speed w to sound speed c) by the 

Laplace equation and for supersonic velocity by the wave equation. 

mathematical problem accordingly changes, for an increase of the Mach 

number in the free-stream region of 

bolic problem. 

in the neighborhood of sound, has defied all attempts at solution until 

now. 

streams at infinity, can be sketched. 

The 

M w ,  from an elliptic to a hyper- 
0 

The mixed elliptic-hyperbolic flnv ?TC?LLG, vkich OCCUTS 

Only exact and approximate streams, which do not yield any parallel 

In the following, a solution of the problem shall again be given 

which must satisfy the pure mathematician less than the applied mathe- 

matician and the aerodynamicist. The detailed work and the comparison 

with experiment follows in the Physica Acta Austriaca. 
- -  

With u, v as velocity components and x, y as Cartesian coordinates, 

the gas dynamic equation (1) which governs the problem andthe equation of 

irrotationality (2) read 

0 a, aU av 
AT A; 

(c2 -u? -& - uv - - uv 2 + (2-v’) - = 
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--av aU = 0 
a? a;; 

For t h in  prof i les ,  neglecting quadratic terms 

V 
U 
- < < l  j u = w (3) 

whereby the gas dynamic equation takes the form (4) 

For the preceding problem, it i s  well known that the sound speed 

and Mach number can be formed as a function of the velocity alone. Here 

it i s  suf f ic ien t  t o  l inearize,  whereby it s h d l  be required that the 

Mach number should be reproduced correctly i n  the f r e e  stream (E%=) and 

a t  sound speed (M = 1). Therefore 

with 

development according t o  

known Prandtl factor .  

c as c r i t i c a l  speed of sound (for  M = 11, The first term of t h i s  
L 

u/u - 1 i s  therefore the square of the well- _ -  

The equations become part icular ly  simple w i t h  the following 

abbreviations : 
- - 

x = x  ; y = y p  

V - 
1 

J - - c*- u w  ; v =  ,*)= /3 ( c *  - UJ 
u - urn V 

U W  

(7) 

Observe that  U - and - V in  the neighborhood of sound become quanti- 

O n l y  far from the speed of sound are  t i e s  of O(1). 

- U and - V small 

(For M - = 1, U - = 1). 



- 3 -  

With the syldbols of (7 ) ,  equations (4) and (2) now become 0 

The first term of the right side of equation (8) corresponds to the 

variation of the (1 - M? - factor, the second term to the sum of the two 

middle terms of the gas dynamic equation (1). These become arbitrarily 

small when the free stream approaches sound speed (urn+ - c ) . The right 
side of equation (8) vanishes far from the speed of sound. The result 

corresponds closely then to the Prandtl rule. 

Let the profile be given by prescribing - v on the - x axis [ (y  - = 0 ;  

- v = v,(x) 1. Then the boundary conditions at infinity and at - y = 0 

0 .  are 

I 
For asymmetric profiles or the placing of the profile let 

prescribed on both sides of the x-axis. 

vo(x) be - 

- 
The expression - -  C*/UQ) - 1 is proportional to B2 [I32 = 

C *  

(x f 1) ( 
correspond not to the prescribing of a profile but to that one group of 

- 1 ) +. . . 1. The boundary conditions (10) therefore 

affine distorted profiles whereby the maximum vo(5) values, hence the - 
maximum thickness ratio for equal vo(x) for the greatest f3 values, 
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therefore correspond to smaller free stream Mach numbers. In this work, 0 
only such thin profiles shall be treated for which 

ciently close to 

factor (uao/c* - -  - 1) can be neglected. 

- lies suffi- 

so that the term in equation (8) containing the 

The system of equations then is 

- c* 

- a u + z  = u -  &J ax ay ax 

with the boundary conditions (10). 

This limitation is not essential to the accomplishment of the 

following calculation, yet in this way shall the essential part of the 

problem be selected and separated from the thickness effect. Profiles 

which satisfy equations (11) and (12) and the boundary conditions (10) 

for the same vc(x) therefore obey a similarity theorem according to 

which the thicker profile corresponds to the lower free-stream Mach 

number and the stronger variations of the velocities to the profile. 

This theorem was exposed almost simultaneously by Guderley, Von K&&, 

and K. Oswatitsch without until now being published in detai.1. 

If the stream density pu is developed so that, in the free stream 

(pu = PCQ urn), ik has the correct value and, corresponding to the Prandtl 

rule, also the correct tangent at the exact stream-density curve and in 

addition produces a maximum for M = 1 , then the series is - 

Hence, with equation ( 7 ) ,  it can be written 
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p u - 1  

(13) 
U 2  = u - -  P A  

p y c '  - 1 )  2 
UCO 

2 Thereupon the expression 
c -  U - U /2 represents essentially the stream 

density, from which it also appears that the gas dynamic equation re-pre- 

senting the continuity condition can also be written. 

A perpendicular condensation shock is a jump of supersonic velocity 

(g>l )  on a value A 
U < 1  for the same stream density. This follows from - 

A 62 
(15) U2 u - -  = u - -  

2 2 
A 

u - 1  = 1 - u  

This is the well-known equation for a near-sound perpendicular shock -- 

I sr,ly such come within the confines of this theory of thin profiles -- 
which says that the arithmetic mean of the velocity before and behind the 

shock is equal to the sound speed. 

One is easily convinced that in the system of equations (11) , (12) 
the characteristic properties of a mixed elliptic-hyperbolic problem are 

completely obtained. The system moreover arises from no uncontrollable 

omissions. Finally, it gives relations f o r  the condensation shock equa- 

tions (13) and (16) and the exact description of the procedure for the 

thinnest in the group of -- corresponding to the similarity law -- 
affine distorted profile. 

2. An Integral Equation 

Now a velocity potential U = Qx, V = QJ can be introduced into - - -  
the system (11) , (12) in the usual way. In the equation 

0 
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aU 
YY ax 

Q x x + C P  = U -  

the right side represents the source distribution in a Poisson equa- 

tion. 

(U aU/ax - = 0) and a linear approximation of the stream density, presumes 

large stream densities e. The effective stream with its smaller stream 
density corresponds to a Prandtl stream with a source distribution in the 

whole field. Thereby the increase of the velocity corresponds to an 

increase of the displacement and consequently a source. The source effect 

vanishes as the square of the distance from the body and the attenuation 

far away obeys the same laws as that for the Prandtl rule or also for the 

incoxupres s ible stream. 

The Prandtl rule, to which would correspond the Laplace equation 

The solution of the Poisson equation for given source distribution 

is known (Courant-Hilbert, V o l .  11, page 2 j O j .  To iiie SOii i -CE < -  L A *  - - - -+inn L3."- 

(17) is added one more source condition on the x axis which gives the 

desired v-distribution. For a symmetrical profile, not at incidence, in 

order that the boundary conditions at 

Prandtl rule or for incompressible flow if the v-distribution of the pro- 

file does not change, the source distribution of the field (U aU/ax) is 

likewise symmetrical to the x-axis. In this way for the U = ax of a 

symmetric nonpositioned profile (only this case shall be treated here) 

one obtains 

0 
- 

y = 0 be the same as for the 

Here _Y,(x,y) is the velocity distribution attained by means of the 
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In equation (19) the Cauchy principal value is  t o  be taken on 

The same holds f o r  the double integral  of equation (18) on the l i n e  

y = 0.  - 
IJ. = - y. 

It i s  defined by means of 

x+( - 
which i s  t o  be par t icular ly  noted for  the following calculations. 

i n  -the TiCiE?ty of the mxirmrm thickness of the body the double in tegra l  

i s  found t o  be negative i n  order that the desired velocity dis t r ibut ion U(X,y) 

w i l l  be represented there as the Prandt ld is t r ibu t ion  

0 
- - -  

IJp increased by an 

additicm in  which, t o  be sure, the desired d is t r ibu t ion  i s  again contained. 

The problem is reduced t o  the solutiau of a singular in tegra l  equation. Wow, 

i f  the double integral  is integrated by parts, the following in tegra l  equation, 

taking in to  account equation (20 ) ,  is mined 

again with the principal value, defined according t o  equation (20), fo r  the 

duuble integral .  

The in tegra l  equation (21) represents the fundamental equation of t h i s  

0 work. The double integral  has here no jump at  the clump Points of U_ and 

is ,  moreover, posit ive in  the vicini ty  of the m x i m  thiclmess of the body, 

but smaller than U2(x,y)/2. The desired velocity d is t r ibu t ion  can be - 
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represented according t o  equation (21) as up 
that consists of U2/2 and the double integral. Likewise, however, the 

stream density - -  U - U2/2 reduced by Up 

double integral. 

velocity is yielded from a relatively small addition to 

difference of and 2 - U2/2 at the important point proves about 

twice as great. This difference must, near-sound, also be calculated very 

increased by an expression 

can be calculated around the 

The first representation has the advantage that the 

Up , while the 

accurately since otherwise the velocity can only be calculated very in- 

accurately from the stream density or yields unusable values of the stream 

density (U - - 2 /2 Besides the calculation 

of e U from U - -  - U /2 is double-valued. However, the advantage also lies 

in calculating the stream density before calculating the velocity out of 

equation (21) -- In this way, the jump in the shock is reproduced in the 

correct qudntlty because the b&le ht.egTal shows there a continuous 

course. 

2 doesn't exceed the value 0.5). 
2 

Interesting, above all, is the velocity distribution on the profile 

(y  = 0) for which with U(0,x) = UO holds - -  - 

Still the knowledge of the velocity distribution in the whole field is 

also necessary, to calculate Uo. 

It is no error when U with equations (21) and (22) is repre- - 
sented also in the local supersonic region in a way corresponding to an 

elliptic type differential equation. However an iteration, .for the local 

supersonic region prohibits in this way that starting from the Prandtl 

solution I& the values be introduced into the right side of equation (21) 

e n  order to obtain the next approximation for U. - This procedure corresponds 

to the Rayleigh-Jantzen method which, as is well known, does not lead to 



- 9 -  

the desired supersonic 

An exact solution 

fields . 
of equation (21) which corresponds to the exact 

calculation of the streams on a thin profile must be very difficult. An 

iteration of equation (21) starting from a good approximation of the re- 

sult would be, on the contrary, conceivable. 

3. Approximate Solution of the Integral Equation 

The velocity distribution U on a line x = constant has always a 

U = Uo with an initial 

- - 
characteristic course. 

tangent [(&/dy), - -  

becomes flatter for larger y-values and vanishes far outside as 

While in the vicinity of the wall, the wall curvature is decisive there 

i s  yielded a condition, for the course farther outside, f i -G i i i  t hz  i ~ t e - - ~ -  

tion of the continuity conditions with respect to 2. Here ( f o r  g,>O) 

the equation 

It falls from the value - -  
= dxo/dx_] which is given by the wall curvature, 

l/x2. 

0- - 

should be used in that go, the desired velocity on g = 0 and b , is 
a function b(2) 

- y = 0 

only be partly fulfilled. 

approximation of the velocity distribution can naturally be improved in 

addition by the assumption of a second parameter. 

- 
which can be so chosen that the irrotationaiity on - 

or the continuity condition in integral form or both conditions will 

By increasing the expenditure of  work the 

Equation ( 2 3 )  substituted in the double integral of equation (22) 

permits the integration over 11 and gives an approximate integral 

equation for IJ~(X) 
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with the rather complicated functional form for - E(z>O)  

For - z < O  a separate determination of - -  E( z) is necessary. The function 

- E is symmetrical in - z (fig. l), increases logarithmically, without limit 

for z = 0 and vanishes entirely at infinity as 1/22 just as the per- 

turbation velocity caused by a body in a parallel stream. 

For the point - x = 4 , the Cauchy principal value should again 
be taken. The singularity of E at this point is logarithmic, therefore 

c m s i ~ g  no difficulties. 

The problem is thereby reduced to the solving of an approximate 

integral equation for - uo(if) 

means of the Prandtl-distribution to $o(x) , in the calculation. With 

respect to the iteration possibility the same holds for equation (24) 

whereby the boundary conditions shrink, by 

as for equation (21). 

To calculate the velocity distribution in the region of the high 

velocities ( U > O ) ,  - because of the strong attenuation of E - , the low 
velocity regions ( U < O )  - in the vicinity of the fore and aft stagnation 

points play a subordinate role. It will therefore be important for the 

calculation of the integral in equation (24) above all, to copy correctly 

the velocity distribution in the neighborhood of the maximum velocity. 

Also, above all, since go enters as a square in the integrand. If no 

condensation shocks occur then - U has in the vicinity of the maximum a 
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parabolic course (fig. 4a). 

(fig. 4e) an approximation of the - U-distribution by half a parabola is 

sufficient since the lower velocities behind the shock in the integral 

of equation (24) are not important. 

tion by means of haLf a parabola on both sides of the shock necessary. 

For the value of the integral in equation (24), the function is 

further of value, as representing a measure for the height of the dis- 

turbance region. Now the attenuation of the disturbance is again 

dependent on the average profile properties. 

to calculate with an average constant 

be only later confirmed. 

For condensation shocks with large jump 

Only for weak shocks is an approxima- 

b(x) 

Therefore it is necessary 

The correctness of this will c. 

A parabolic peak or half a parabolic peak then has three essential 

yrameters. The greatest lielght g i 7 m  5:. the width xo and its 

position given perhaps by the coordinate & , its maximum. Wrth this, 

it is given by 

c 

which statement shall hold only for Uo>O , therefore Ix-%l<-xo. 
After the substitution of equation (26) in equation (24) and the 

accomplishment of the integration the integral equation can be satisfied, 

for given b , at exactly three pointscorresponding to the three avail- 
able parameters, out of which Lo, & and & can be determined. The 

approximation (26) will, in the following, be employed solely as a true 

velocity distribution but only to calculate the difference between 

- 

go and 

$o and also the difference between go - lJ0*/2 and cp0. The first 
@method can be applied, according to the required knowledge of UO2/2 , 
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only there where is  given by equat im (26) therefme,  above a l l ,  i n  the 

supersonic region. The  second method provides a l l  values, w i l l  not be applied 

usefully however for  values near u = 1. - 
it 

For constant c, only - x b  and with/also only the value &b occurs 

f o r  the computation of the integral  i n  equation (24). There can therewith be 

subs ti tuted: 
7 

(27 )  

-.Q) J 

The functions f l  and f 2  are depicted for the parabolic peak and the  half a 

parabolic peak i n  figures 2 and 3. They can be used t o  calculate a wholly arbi- 

A---..- b r a r Y  -wrr9i pIvIIAc. 1 -  sc! Inn? as one i s  sa t i s f ied  with the approximation (23) i n  the f i e l d  
- 

fo r  constant average b and with equation (26) t o  calculate the above functions. 

It is  thereby especially astonishing, that for  the harlf-parabolic peak, the 

value a t  the maximum hardly depends on the value xofi; therefore a l so  hardly 

on i tsel f ,  as a cer ta in  carelessness in  the choice of mrameters j u s t i f i e s .  

4. Application t o  the Biconvex Prof i le  

Figures k - 4e give an application t o  a prof i le  which i s  a l s o  symmetrical 

r e l a t ive  t o  the maximum thickness and for supersonic speeds a l so  yields therefore 

a symmetric SL dis t r ibu t i0s . l  Let b = fi/4, corresponding t o  the value of 
- 

It i s  a question of the boundary conditians = 2T(1-2x) for 0 < 5 < 1; 
therefore,  essent ia l ly  about a biconvex profile.  Thereby, T i s  a "re~uced" 
thickness r a t i o  tha t ,  corresponding t o  the s imi la r i ty  law, i s  re la ted t o  the 
correct thiclme6S r a t i o  T *  of the  prof i le  i n  the following way: /_* \ 
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(&/as) 

solution (prabola peak), coincidence is required of the m a x i m  and of that 

at the =ximum for  the Prandtl distribution. For the symmetrical 
0 

point in which & (equation (26)) vanishes, therefore where V_ = lJpo. Besides 

one knows here that the parabola peak lies spetrically. For the solution with 

a condensation shock, the zero point of the half-parabola peak will coincide 

with the zero of the Prandtl distribution, which yields hardly any error. 

Coincidence will again be required at the IIlaxirmun and at f2  = 0. The calcula- - 
lations can be accomplished quickly after which the work of calculating fl and 

f2  is Once and for all eased. Consequently, the effect of a change in b is 
- 

L 

also easily studied. 

There is, for the ratios which are the basis of figure 4d, a symmetric and 

an asymmetric pressure distribution. Whether the symmetric one is correctly 

reproduced will require more accurate study because for k e  calcu’ktizr: 09 

over & -U+, /2 a symmetric solution is perhaps also yielded which, it is 

true, exhibits an expansion shock before the maximum thickness and a condensation 

TT ro 
0 

2 

shock symmetric to it behind the mximumthickness which is therefore therm+ 

dynamically inadmissible (dotted curve). Practically, this question is, of 

course, less interesting, since for values much larger than sound speed, the 

asymmetric solutions are interesting. For yet higher free-stream velocities, 

the calculatim yields in general no more symmetric solution (figure b). 

Interesting and fill of practical meaning is the acceleration of the stream 

behind the shock. 

yielded . 
For pure subsonics (figures 4a and 4b) nothing new is 



5. Retrospect and Prospect 

The theory develqped here is obtained according to the setting up of 

an integral equation (21) while qualitatively correct solution laws which 

contain available parameters are set in the integral equation and the exact 

fulfillment of the integral equation is required in one of the parameters 

corresponding to the number of points. 

experiment of course is still lacking. Since, however, the strong change 

in the type of velocity distribution in a very small region of Mach num- 

bers of the free stream takes place, it is sure that the well-known drag 

rise will be well reproduced. 

The comparison of theory with 

Certainly this theory is yet capable of improvement. However, it is 

interesting to obtain corresponding solutiorsfor the profile at incidence 

and for a supersonic stream with ivcai si ipe~ssziz  r e g i c n s ,  


